
Engr433 Xilinx VHDL Capture Tutorial

Revised 10/24/2019

1) Create a new project directory.
2) Start the Xilinx ISE version 14.7 software by entering ise (lower case) in a terminal window. If you are

using a graphical user interface, select other, then Xilinx ISE. Note that ise may start up with a prior
design loaded. If so, click File ® Close Project.

3) Create a new project by clicking on the New Project… button in the left-side menu.
a. To set the Project Location, use the button in the Location line with three dots to open the

Select Directory pop-up window and navigate to the directory you created for the project.
b. For the purposes of this handout, enter a project name of ex1_top.
c. Select HDL as the type of top-level source and then click Next.
d. The Project Settings screen should appear. Set values as follows:

Evaluation Dev Board None Specified
Product Category General Purpose
Family Spartan6
Device XC6SLX16
Package FTG256
Speed -3
Top-level Source Type HDL (this field may be grayed out)
Synthesis Tool XST (VHDL/Verilog)
Simulator ISim (VHDL/Verilog)
Preferred Language VHDL
VHDL Standard VHDL-93

e. Click Next.
f. The project summary screen will be displayed. Review the information and fix mistakes as

needed, then click Finish. At this point, there are no design files for the project. In the upper left
window, Empty View will be displayed.

g. Click on the New Source button in the upper left. The New Source Wizard will open. Click on
VHDL Module and enter the file name ex1_top_vhdl_module. Click Next.
The Define Module window will open and allow you to specify the signals that will connect to
physical pins of the FPGA, both input and output. These become the signals named in the port
statement in the entity. For this example, enter:

x in
y in
out1 out

After listing your signals, click Next.

h. The Summary window will open showing the definition of the module and the port definitions.
Click Back to fix anything, otherwise click Finish. Your newly created VHDL source file
should open in the editor window.
Note: If you created your VHDL source file with another editor you can use the Add Source
button on the left tool bar rather than New Source button.

i. The Entity of your VHDL description has been created as well as the start of the Architecture
description. Your screes should look something like the listing on the following page.

Page 2

Figure 1 - Initial VHDL File

Page 3

4) Two more things need to be done before you build the project:
i. Add VHDL statements to the architecture to describe the desired circuit.

ii. Add attribute statements to the entity to map I/O signals to physical FPGA pins or set up a
user constraints file (UCF). The example circuit below has two input signals that are
ANDed together with the result displayed on Led0. Note the attribute statements that
define connections to the FPGA pins.

5) The content of the left sub-window(s) changes depending on the tab selected at the bottom. The

default tab is Design which causes a hierarchy display in the top left window with the name of your
project, the FPGA type, and under the FPGA the name of the top level VHDL file.

From this point on, building the project and downloading it to an FPGA follows the same procedure as that
used for schematic driven design.

Notes:

1. The ibuf and obuf components that are manually placed in a schematic-based design are automatically
inserted by the synthesizer in a VHDL design based on the signal type declared in the entity port
statement.

2. Global clock buffers will automatically be placed on the inputs that are used for global clock inputs. If
an internally derived clock needs to be connected to a global clock buffer, then that will need to be done
manually in the VHDL source file like this:

 Library UNISIM;
 use UNISIM.vcomponents.all;

 BUFG_inst: BUFG
 port map (

0 => signal_out; - - Clock buffer output
I => signal_in - - Clock buffer input

);

where signal_out and signal_in are the names of signals you are using in your design.

Page 4

VHDL Source File Details

• The VHDL file (or files) must be in “plain text” format that conforms to VHDL syntax standards. If
your design has multiple VHDL files, one must be the “top level” module and all external
inputs/outputs, i.e. connections to the FPGA, must be made to signals declared in the entity port
statement of that top level VHDL file.

• There are two ways to specify pin numbers associated with each signal named in the entity port
statement. Either they are declared in the VHDL source file using attribute assignments or they are
defined in a .ucf constraints file.

The next page shows an example file that creates an XOR gate with the FPGA pin connections defined using
attribute statements. Note that the first attribute statement essentially defines a data type for the others. Also note
that the pin numbers shown here are for the WWU FPGA3 board which uses an XC6SLX16 part in a FTG256
package.

Library ieee;
Use ieee.std_logic_1164.all;

Entity myXor is

port(x,y : in std_logic;
h : out std_logic);
attribute LOC : string;
attribute LOC of x : signal is "P9"; -- sw0
attribute LOC of y : signal is "N8"; -- sw1
attribute LOC of h : signal is "L14"; -- led0

End myXor;

Architecture myXorBehav Of myXor is

Begin
h <= x xor y;

End myXorBehav;

If an input or output signal is a bus, i.e. a vector, rather than having a separate LOC statement for each
individual signal in the bus you can just have one LOC statement for the vector but it will have a list of pin
numbers. For example, suppose the simple circuit above were described using a 2-bit bus that brings in the
connection from two switches. The description might look like this:

Library ieee;
Use ieee.std_logic_1164.all;

Entity myXor is

port(x : in std_logic_vector(1 downto 0);
h : out std_logic);
attribute LOC : string;
attribute LOC of x : signal is "N8, P9"; -- sw1 and sw0, in that order
attribute LOC of h : signal is "L14"; -- led0

End myXor;

Architecture myXorBehav Of myXor is

Begin
h <= x(1) xor x(0);

Page 5

End myXorBehav;

A second way to define I/O pins is to put the pin number definitions in a user constraints file (.ucf) that is
located in the project directory and not place attribute LOC statements in the VHDL source file. The constraints
file is an ASCII text file and can be created using any text editor (or using the Xilinx PACE constraints editor,
but that is not discussed here). On the class webpage are two constraint files that define the possible inputs and
outputs for a WWU FPGA3 board. These files are:

wwu_fpga3_single.ucf individual signal names, all commented out
wwu_fpga3_vector.ucf vectorized signal names, all commented out

Add one of these files to the project folder for your design if you wish to use it. When the synthesizer reads a
constraint file it checks to see that all signals listed in the port statement of the top-level entity match one-to-one
with names in the constraint file and that there are no extra names in the constraint file.

